CLASS XII SAMPLE PAPER MATHS

SOME IMPORTANT QUESTIONS ON CHAPTERS 3, 4, 5 AND 6

Section- A (One mark each)

1) Find the value of a for which $\left[\begin{array}{lll}1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right]$ is non-invertible.
2) If A is a square matrix such that $\|A\|=2$, write the value of $\|A\|^{8}$
3) Find the value of the determinant $\left|\begin{array}{lll}x & 2 & y+z \\ y & 2 & z+x \\ z & 2 & x+y\end{array}\right|$
4) A continuous function is defined as $f(x)=\left\{\begin{array}{l}\frac{2 \mathrm{x}}{\sin y^{2}}, x<0 \\ \frac{\mathrm{tanchax}}{\mathrm{x}}, \mathrm{x}>0 . \text {. Find } \mathrm{a}^{2}+\mathrm{b}^{2}\end{array}\right.$

$$
\mathrm{x}=0
$$

5) Let $\lim _{x \rightarrow 3-0} f(x)=a, \lim _{x \rightarrow 3+0} f(x)=b$ and $a+b=4$. Find the value of $f(3)$ if $f(x)$ is continuous at $\mathrm{x}=3$.
6) If $y=\frac{1}{1+x^{m-m}}+\frac{1}{1+x^{n-m}}$, find the value of $\frac{d y}{d x}$
7) Find the interval in which $f(x)=\|x\|$ is a decreasing function.
8) Find the angle between tangents to the curve where it cuts x - axis.
9) Find the value of x where $f(x)=x \log x$ has local minimum.
10) If $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-z)}$ is finite and unique, then write the value of $\lim _{x \rightarrow a} f(x)$

Section- B (Four marks each)
11) If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then find k if $A^{2}=k A-2 I$
12) If $A=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$; $B=\left[\begin{array}{cc}\cos ^{2} \varphi & \cos \varphi \sin \varphi \\ \cos \varphi \sin \varphi & \sin ^{2} \varphi\end{array}\right]$, then show that $A B$ is a zero matrix, provided $(\theta-\varphi)$ is an odd multiple of $\frac{\pi}{2}$
13) Using properties of determinants, prove that:

$$
\left|\begin{array}{ccc}
-a\left(-a^{2}+b^{2}+c^{2}\right) & 2 b^{3} & 2 c^{3} \\
2 a^{3} & -b\left(a^{2}-b^{2}+c^{2}\right) & 2 c^{3} \\
2 a^{3} & 2 b^{3} & -c\left(a^{2}+b^{2}-c^{2}\right)
\end{array}\right|=a b c\left(a^{2}+b^{2}+c^{2}\right)^{3}
$$

14) If $2 s=a+b+c$, show that $\left|\begin{array}{ccc}a^{2} & (s-a)^{2} & (s-a)^{2} \\ (s-a)^{2} & b^{2} & (s-b)^{2} \\ (s-c)^{2} & (s-c)^{2} & c^{2}\end{array}\right|=2 s^{3}(s-a)(s-b)(s-c)$
15) Determine the values of a, b, c for which the function f defined by

$$
f(x)=\left\{\begin{array}{l}
\frac{\sin (a+1) x+\sin x}{x}, x<0 \\
\frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b^{\frac{2}{2}}}, x>0 \\
c \quad x=0
\end{array} \text { is continuous at } x=0\right.
$$

16) Find the values of a and b such that the function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{c}
x+a \sqrt{2} \sin x, 0 \leq x \leq \frac{\pi}{4} \\
2 x \cot x+b, \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\
a \cos 2 x-b \sin x, \frac{\pi}{2}<x \leq \pi
\end{array} \quad \text { is continuous for all } x \text { in } 0 \leq x \leq \pi\right.
$$

17) If $y=e^{a x} \sin b x$, prove that $\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$
18) Verify Rolle's theorem for the function $f(x)=x(x+3) e^{-\frac{\pi}{x}}$
19) Prove that $\frac{x}{1+x}<\log (1+\mathrm{x})<\mathrm{x}$, for $\mathrm{x}>0$
20) Find the intervals in which the function given by $f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11$ is i) strictly increasing, ii) strictly decreasing
21) Show that the curves $x^{3}-3 x y^{2}=a$ and $3 x^{2} y-y^{3}=b$ cut each other orthogonally, where a and b are constants.
22) Find the angle of intersection of the curves $y^{2}=4 a x$ and $x^{2}=4 b y$.

Section- C (six marks each)
23) For matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, verify that $A^{3}-6 A^{2}+9 A-4 I=O$, hence find A^{-1}
24) If $\sqrt{1-x^{6}}+\sqrt{1-y^{6}}=a\left(x^{3}-y^{3}\right)$, prove that $\frac{d y}{d x}=\frac{x^{2}}{y^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$

chasesuess	CBSEGuess.com

25) A given quantity of metal is to be cast into a half cylinder i.e. with a rectangular base and semi-circular ends. Show that in order that the total surface area may be minimum the ratio of the height of the cylinder to the diameter of the semi-circular ends is $\frac{\pi}{\pi+2}$
26) If the length of three sides of a trapezium other than base are equal to 10 cm , then find the area of trapezium when it is maximum.
27) Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.
28) Prove that a rectangle of maximum area that can be inscribed in an equilateral triangle of side b will be $\frac{\sqrt{3 \mathrm{~b}}}{8}$
29) The fuel charges for running a train are proportional to the square of the speed generated in mile/h and cost Rs. 48 per hour at 16 miles $/ \mathrm{h}$. Show that the most economical speed of the train if the fixed charges i.e. salaries etc amount to Rs. 300 per hour is 40 mile/h

